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Abstract—We proposed a new method to solve the multi-
objective problems in chip packaging design by applying machine
learning algorithms. Seven algorithms were implemented and
analysed to optimize warpage and max von Mises stress influ-
enced by five parameters in our finite element model. We built a
finite element model in Abaqus and construct its interfaces with
python and matlab code. The black-box function is tested on clas-
sical multi-objective algorithms such as MOEA/D-EGO, NSGA2.
In order to find a superior algorithm, we also implemented
state of the art surrogate-assisted expensive multi-objective op-
timization algorithms including θ-DEA-DP, MOEA/D-ASS and
qEHVI. An empirical study on the better performed algorithms
is accomplished in our experiment. With further comparison
and analysis, we demonstrate the superiority of our method of
applying machine learning technique to tackle multi-objective
optimization problems in chip package design industry.

Index Terms—Surrogate-assisted evolutionary computation,
expensive multi-objective optimization, machine learning,
Bayesian optimization, chip packaging, finite element modeling.

I. INTRODUCTION

In the current rush, semiconductor design and manufac-
turing is one of the most promising areas in the race to
apply machine learning to huge markets and applications. With
the increasing complexity and overall scale of chip design
in the post-Moore’s-law era, chip packaging has become an
issue. Scale and complexity create more uncertainty, redesigns,
missed schedules, and so on[1]. More design variables should
be considered and multiple objectives would be optimized
simultanously. In such situation, using machine learning to
assist chip packaging design can help to reduce the waste of
time and manpower. And it is true that applying ML to offload
the work is becoming a trend in chip field[2].

A. Literature review

Actually, international scholars have researched various
difficulties with regarded to chip packaging assisted by ma-
chine learning and made varying degrees of progress. The
M.Yasunaga team improved signal integrity by using STL to
compensate for distortion of the waveform[3]. H.Zaidan’s team
apply machine learning algorithm to optimize the structure
such as hot slot[4]. H. Manimegalai’s team used reinforcement
learning algorithm as the layout algorithm, combined with
support vector machine (SVM), to quickly and accurately find
the layout method that meets the requirements of temperature

distribution[5]. Li Yongsheng studied dynamic thermal man-
agement method of 3D integrated packaging based on fluid
refrigeration technology and machine learning algorithm[6]. Ji
Hang established DNN, CNN, SVR, KNN and linear regres-
sion prediction model to predict the far-field radiation of 0.2
GHz to 20 GHz output by input the selected seven key package
structure parameters[7]. In Dai Weijing’s study, an easy-to-
use and effective optimization workflow based on Bayesian
optimization and Gaussian process is implemented and further
improved by applying simulated annealed algorithm[8].

Our exploration is targeted on warpage and stress. For
now, a few researches have paid attention to the combination
of machine learning and the above two concerns. In 2020,
a study of this kind demonstrated a method that based on
neural network to learn relationship between the different
panel level package geometry sizes with warpage values and
try to optimize and evaluate the warpage[9]. In the same year,
another study developed a model involving SVM and Random
Forest to solve the problem of stress in chip packaging[10].
However, these two problem are barely studied simultanously.

B. Limitations of current approaches

Nevertheless, the existing research still has some shortcom-
ings. Thermal models for TSV metal cores are of lacking.
So do thermal problems with electromagnetic pulse(EMP).
Crosstalk shielding and common-mode noise shielding are not
abundant enough and there is no effective design method.
There are many testing steps and complex testing indexes,
which need to consume a lot of time and cost[6]. In Dai’s
study, the decay factor for the annealing schedule to adjust
has been chosen rather arbitrarily in current application, and
not tested for other values. Thus, further insight about effects
and guideline of changing this factor will be helpful to make
the work flow more robust[8]. Nevertheless, the studies of
stress inside the chip, detecting holes and other problems are
also lacking. Most of the scholars only focused on one single
objective, the research for multi-objective optimization(MOO)
in chip packaging field is absolutely ponderable.

C. Related Expensive MOO Works

Many scholars focus on expensive MOO algorithms. The
most famous and earliest algorithm is NSGA2[11] proposed



almost 20 years ago. Then Qingfu Zhang and Hui Li proposed
MOEA/D in 2007[12], which is the original version of a lot
of the algorithms that followed. To improve the performance,
scholars implemented surrogate models into the evolution
algorithms, like Parego[13] and MOEA/D-EGO[12].

On this basis, others try to improve the algorithms more by
changing or proposing new surrogate models, acquisition func-
tions, and other details. However, a multi-objective problem
may not just have one Pareto front. In practical applications,
some multi-objective problems have different Pareto sets with
the same objective values and these problems are defined as
multimodal multi-objective optimization problems[14]. Liang
focuses on the distribution of decision space when many
people just consider the objective space.

The two key operations in an intelligent search strategy
are exploration and exploitation. Among them, exploration
ability affects convergence speed and exploitation ability af-
fects the diversity of the solution set. Xilu Wang proposed
an adaptive Bayesian approach, whose main idea is to tune
the hyperparameter in the acquisition function according to
the search dynamics to determine which candidate solutions
are to be evaluated using the expensive real objective func-
tions. Prof. Zhenkun Wang integrated the ASS strategy, the
CoMOGP model, and the ALCB into a novel algorithm
called MOEA/D-ASS[15]. The ASS strategy helps to select
subproblems preferably. The ALCB method modifies the γ
in the original method, LCB, and balances the exploration
and exploitation better. Yuan Yuan considered the dominance
relationship and proposed θ dominance in 2016. Then he
used deep FNN as the surrogate model and combined Pareto
dominance and θ dominance to get a better algorithm called
θ-DEA-DP[16]. He also used directional retrieval to keep the
diversity. The deep FNN may cause the overfitting in the
training process, so yuan only used 3 layers in his work.
To solve MOO in high dimension, Jianqing Lin proposed
a surrogate assisted evolutionary algorithm (SAEA) with an
adaptive dropout mechanism in 2021[17], which took advan-
tage of the statistical differences between different solution
sets in the decision space to guide the selection of some crucial
decision variables. Genghui Li proposed a three-level radial
basis function (TLRBF)-assisted optimization algorithm for
expensive optimization in 2021[18]. Although the algorithm
focus on a single objective, the three search procedures at
each iteration are still useful for the problem of expensive
multi-objective optimization. Rojas surveyed the most relevant
kriging-based infill algorithms in 2020[19]. These algorithms
perform a sequential search of so-called infill points, used
to update the kriging metamodel at each iteration, but none
of them so far incorporates an effective way to deal with
heterogeneous noise.

Some platforms integrated MOO algorithms and created a
graphical interface to help other scholars develop their algo-
rithms and do experiments easier. Y Tian developed Platemo
with Matlab in 2017[20] and AutoOED in 2021[21]. Balandat
improved Botorch in 2020[22] as well.

As for application, MOO algorithms started to be used

in real-world problems for many years, not just about chip
package. Zeng proposed a multi-objective optimization design
method for power module packaging and solved it by using
NSGA-II[23]. Prinz presents a novel trust-region method for
the optimization of multiple expensive functions He applied
this method to a bi-objective optimization problem in fluid
mechanics, the optimal mixing of particles in a flow in a
closed container[24]. Real-world problems may have unex-
pected questions, such as the ways of normalization, poor
distribution, and strange Pareto front.

Existing methods have improved in many areas. To some
extent, they have acceptable performance in practical multi-
objective optimization problems. However, an algorithm that
does well in one area cannot mean it does well in another. In
practical engineering problems, how to weigh which algorithm
is the best, and how to combine the advantages of existing
methods to get better answers are things we still need to
explore.

D. Contributions

In this paper, we aim to apply machine learning algorithms
to implement the optimization of a multi-objectives optimiza-
tion problem in chip packaging design. Based on Dai’s study,
we design a chip model with 2 objectives: maximum von
Mises stress and the extent of warpage, and 5 design variables
including coefficient of thermal expansion of Epoxy molding
compound (EMC), the thickness of EMC, die, die-attach layer
and substrate[8]. 7 algorithms are implemented and compared
to find the best set of parameters.

Fig. 1. Illustration of the blackbox function

II. PRELIMINARIES AND BACKGROUND

This section presents the basic concepts that are related to
our work.

A. Multi-Objective Optimization

Multi-objective optimization is to simultaneously optimize
two or more objective functions without explicitly balancing
them, in others words, there is no solution to optimize every
objective function at the same time.

These objective functions are often contradictory – optimiz-
ing one of them ”harms” the others – so it is impossible to
find a solution that is optimal for all of them. Therefore, the
solution of multi-objective optimization is a group of solutions,



in which each solution has its unique advantages over other
solutions. This advantage can be measured by a number of
criteria, one commonly used method being Pareto optimality.

As for expensive MOO, it costs more to do simulation so
that it is supposed to get better result with less evaluations.
We can define a MOO problem as:

minimize f(x) = (f1(x), . . . , fm(x))
⊤

subject to x ∈ Ω ⊂ Rd

B. Evolutionary Algorithms

Evolutionary algorithms are not a specific algorithm, but
a ”cluster of algorithms”. The inspiration of evolutionary
algorithms refers to the evolutionary operations of organisms
in nature, which generally include basic operations such as
gene coding, population initialization, crossover and mutation
operators.

Evolutionary algorithm has natural advantages in solving
multi-objective problems. Commonly used evolutionary multi-
objective optimization algorithms include NSGA-II based on
congestion distance measurement proposed by Deb[25] and
MOEA/D algorithm based on decomposition thought proposed
by Qingfu Zhang[12].

C. Dominance

There are two kinds of dominant relationships. The first
one is classical Pareto Dominance while the second one is θ
Dominance proposed by Yuan[16].

Pareto Dominance is a kind of dominance relationship.
Given 2 solutions A and B with 2 dimensions, if a1 is better
than b1 when a2 is not worse than b2, we call A Pareto
dominances B.

θ Dominance[16] is similar to Pareto Dominance to some
degree. But it keeps diversity better. As the figure shown, the
objective space is divided into N clusters by N+1 weight vec-
tors. As for any solution in this space, we choose the nearest
weight vector to compute the penalty boundary intersection
(PBI) function which is defined as

Fi(x) = di,1(x) + θdi,2(x)

Fig. 2. θ Dominance

D. Surrogate Model

Surrogate model is a common optimization method used
in expensive black-box problem. The calculation result of
the surrogate model is quite close to the original model, but
the calculation amount is smaller. The surrogate model is
built by calculating the responses (outputs) of the original
model at a carefully selected number of points (inputs). While
evolutionary algorithms(EAs) such as NSGA-II are popular
choices for solving MOO problems, they still suffer from
high sample complexity, rendering them infeasible for optimiz-
ing expensive-to-evaluate black-box functions[26]. Surrogate
model assisted algorithms such as Bayesian optimization,
however, provides a much more sample-efficient alternative.

Fig. 3. Surrogate modeling workflow

E. Bayesian Optimization(BO)

Bayesian Optimization is a sample-efficient optimiza-
tion method that utilizes a probabilistic surrogate model
to make principles decisions to balance exploration and
exploitation.[27] The typical surrogate is Gaussian Pro-
cess(GP). Evaluating the surrogate is dramatically cheap and
fast comparing to evaluate the true black-box function, there-
fore the numerical optimization can assist to find the maxi-
mizer of the acquisition function to evaluate next on the true
black-box function.[28] BO sequentially selects new points
to evaluate and updates the model to incorporate the new
observations.



Fig. 4. Curve fitting gets improved while sample data increases

F. Acquisition function

The acquisition function is constructed according to a pos-
terior probability distribution, and the next most ”potential”
evaluation point is selected by maximizing the acquisition
function. At the same time, an effective collection function
can ensure that the selected sequence of evaluation points
minimizes the total loss.

G. Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a statistical method for
generating a pseudo-random sample of parameter values from
a multidimensional distribution. When sampling a function of
N variables, the range of each variable is divided into M
equally probable intervals. M sample points are then placed
to satisfy the Latin hypercube requirements, this forces the
number of divisions, M , to be equal for each variable.

Fig. 5. Different Sampling Methods

H. Hypervolume

Given a reference point r ∈ RM , the hypervolume indi-
cator (HV) of a finite approximate Pareto set P is the M -
dimensional Lebesgue measure λM of the space dominated
by P and bounded from below by

r : HV(P, r) = λM

(⋃|P|
i=1 [r,yi]

)
In which [r,yi] denotes the hyper-rectangle bounded by
vertices r and yi.

I. Hypervolume Improvement

Given a Pareto set P and reference point r, the hypervolume
improvement (HVI) of a set of points Y is:

HVI(Y,P, r) = HV(P ∪ Y, r)−HV(P, r)

J. Chip Warpage and von Mises Stress

Stress inside the chip and warpage are two common prob-
lems in chip packaging. Warpage is a big issue in packaging
industry. Large warpage in chip package can cause serious
consequence, such as difficulty with post encapsulation pro-
cesses like reflow, which may stop the manufacturing process
from continuing[29]. As for stress, because of the mismatch in
the thermal expansion coefficient between the chip and mate-
rials used in the modules, large local deformation of the chip
caused by thermal stress increases sharply. Such a localized
high stress gives rise to fractures such as delamination or
cracking of materials composing the modules[30].

K. Modeling

The tested packaging in Abaqus is based on Dai’s model6.
Package is simplified to neatly stacked cubic model.

Fig. 6. Single-die package model,Source: Dai Weijing, 2020

The five design variables used in the range are shown in
table I:

TABLE I
DESIGN SPACE

Parameters min max
Thickness of die (mm) 0.2 0.32

Thickness of adhesive (mm) 0.02 0.04
Thickness of substrate (mm) 0.2 0.3

Thickness of EMC (mm) 0.55 0.95
CTE of EMC (ppm/°C) 8 12

To make the output more recognized, we have the 4 pa-
rameters of thickness multiplied a coefficient of 1000. After
simulation, we normalize the output. The model is able to print
out two values of targets – the maximum von Mises stress and
the displacement of warpage.



III. ALGORITHMS IMPLEMENTED

A. θ-DEA-DP

θ-DEA-DP is an expensive multi-Objective evolutionary
optimization algorithm proposed by Yuan in 2020[16].

Such an algorithm uses deep feedforward neural networks
(FNNs) as the surrogate model. Both Pareto dominance and
dominance are used to select a representative solution for each
weight vector. The two-stage Preselection strategy is some-
thing like an acquisition function. The first stage randomly
takes a representative solution. If the solution is null, it will
explore the -non-dominated solution in this cluster to enhance
the diversity. If the solution is not null, it will divide every
solution into four sets according to the dominance relationship
between the selected solution and others predicted by neural
networks. The second stage is to select the best one in the
previous stage with the expected dominance number (EDN)
which is defined as:

e (zi) =
∑

j ̸=i I
(
t̂ (zi, zj) = 1

)
p̂ (zi, zj)

EDN in terms of θ-dominance is similar. Finally, it adds
two EDNs and chooses the biggest one to evaluate.

Algorithm 1 Framework of the Proposed θ-DEA-DP
Source: Yuan Yuan, 2021

1: {w1, w2, ..., wN} ← InitializeWeightVectors(m)
2: P← LatinHypercube(n)
3: evals← 0
4: A← ∅
5: for x ∈ P do
6: Evaluate(x)
7: evals← evals + 1
8: A← A ∪ x
9: end for

10: p-net ← Initiate-Pareto-Net(A)
11: θ-net ← Initiate-θ-Net(A)
12: {x∗1, x∗2, ..., x∗N} ← Get-θ-Reps(A)
13: {y∗1 , y∗2 , ..., y∗N} ← Get-Pareto-Reps(A)
14: P← TruncatePopulation(P,N)
15: while evals < MaxEval do
16: j ← ChooseTargetClusterIndex(N)
17: Q← GenerateOffsprings(P, N )
18: z← TwoStagePreSelection(Q, x∗j , y

∗
j ,p-net,θ-net)

19: Evaluate(z∗)
20: evals← evals + 1
21: A← A ∪ z∗

22: Update-Pareto-Net(p-net,A)
23: Update-θ-Net(θ-net, A)
24: Update-θ-Reps({x∗1, x∗2, ..., x∗N},A)
25: Update-Pareto-Reps({y∗1 , y∗2 , ..., y∗N},A)
26: P← TruncatePopulation(P ∪ z,N )
27: end while

B. qEHVI

qEHVI is a one-step Bayes-optimal policy for maximizing
the hypervolume dominated by the Pareto frontier[31]. It is
based on expected hypervolume improvement (EHVI), which
scales to highly parallel evaluations of noisy objectives. The
approach is made feasible by a general-purpose, differentiable,
cached box decomposition (CBD) implementation that speeds
up critical computations needed to account for uncertainty
introduced by noisy observations and generate new candidate
points for highly parallel batch or asynchronous evaluation.
The CBD-based approach solves the fundamental problem
of scaling parallel EHVI-based methods to large batch sizes,
reducing time and space complexity from exponential to
polynomial.

C. qParEGO

qParEGO[32] is another batch variant of ParEGO that uses
compositional Monte Carlo objectives and sequential greedy
candidate selection. ParEGO algorithm aggregates multiple
objective values of a solution into a single function value via
a parameterized weight vector. Next, a solution is selected
for evaluation by maximizing the expected improvement (EI)
criterion with respect to the current aggregation function. By
choosing a different weight vector in each iteration ParEGO
is expected to implicitly maintain the diversity of evaluated
solutions.

D. MOEA/D-EGO

MOEA/D-EGO[33] extends ParEGO to the batch setting
using multiple random scalarizations while considering all
aggregation functions rather than a single one in each iteration
and maximizes their corresponding EI values simultaneously
using MOEA/D-DE[34] in order to generate several points for
function evaluation.

E. MOEA/D-ASS

Wang proposed a novel algorithm, MOEA/D-ASS, that
integrated the ASS strategy, the CoMOGP model, and the
ALCB in 2021[15]. The ASS strategy with the framework
is shown in III-E.

1) CoMOGP: The CoMOGP model is a kind of improved
GP model. With S subproblems, we can build a joint MOGP
model instead of T GP models independently. In this case, we
can get a better result if these subproblems are strongly similar.
Nevertheless, the result will be worse if they have few things
in common. The CoMOGP does well in such conditions. By
transferring messages across subproblems and catching the
individual feature of each subproblem, it can get better results
no matter the similarity is strong or weak. The covariance
function between two subproblems can be written like that:

ktt′ (x, x
′) =

{∑Q
q=1 a

2
t,qkq (x, x

′) + kt (x, x
′) , t = t′,∑Q

q=1 at,qat′,qkq (x, x
′) , t ̸= t′,

the prediction mean and variance at a new point x is:

ĝ (x∗) = K∗nK
−1
y y,

Σ∗ (x
∗) = K∗∗ −K∗nK

−1
y Kn∗,



Algorithm 2 MOEA/D-ASS
Source:Zhenkun Wang, 2021

Input: MOP; nI : the initial population size; FEmax : the
maximal number of function evaluations; N : the sub-
problem size; T : the number of subproblems selected in
each iteration, nT : the size of the training data assigned
to each subproblem.

Output: NP :the set of non-dominated solutions in EP ;
1: Step 1 Initialization: Generate nI initial solutions for

function evaluation EP =
{(

xi, fi
)}nI

i=1
and set FE =

nI ; construct N subproblems G = {gi}Ni=1.
2: while FE < FEmax do
3: Step 2 Subproblem selection: Use the ASS strategy

to select a set of T subproblems GS from G.
4: Step 3 Training data allocation: For each subproblem

in GS , assign nT evaluated solutions as its training data.
5: Step 4 Model training: Train a CoMOGP model for

the subproblems in GS .
6: Step 5 Model assisted optimization: Optimize the

subproblems in GS by evaluating solutions via the
trained CoMOGP model and an acquisition function,
to obtain T candidate solutions

{
xi
}T

i=1
.

7: Step 6 Function evaluation: Evaluate
{
xi
}T

i=1
with

the original objective functions, and add them to EP .
8: Step 7 Update: Let FE = FE+T ; update z∗ and ST

for each subproblem in G.
9: end while

2) ALCB: The traditional LCB acquisition function is de-
fined as:

u(x) = ĝi(x)− γσ̂i(x)

In MOEA/D-ASS, promoted acquisition function, ALCB,
modify γ as following format to

γ = γ1 + γ2
γ1 = 10 exp

(
−0.02|NP |2

)
γ2 = 0.1

1+exp(100(ĝi(x)−g∗
i ))

F. NSGA-II

NSGA-II is a fast non-dominated multi-objective optimiza-
tion algorithm with elite reservation strategy. It is based on
Pareto optimal solution.

The basic idea of NSGA-II is as follows: N initial popu-
lations are randomly generated. After non-dominated sorting,
the first generation of offspring population is obtained by se-
lection, crossover and mutation of genetic algorithm. Starting
from the second generation, the crowding degree of each non-
dominant layer is calculated by combining parent population
and offspring population. Suitable individuals are selected
according to non-dominant kinship and crowding degree to
form a new parent population. A new offspring population is
generated through the basic operation of genetic algorithm,

and so on in a similar fashion, until the ending condition of
the program is satisfied.

IV. EXPERIMENT AND ANALYSIS

A. Experiment Design

The chosen 7 algorithms are tested under the same condi-
tions, which are:

1) The number of independent runs is 7.
2) The initial sampling method is Latin Hypercube Sam-

pling while the number of sampling is 54.
3) Number of evaluations is strictly constrained to 120.
4) The objectives are normalized to 0 to 1 after the pre-

liminary experiment, and the original ranges of warpage
and von Mises stress are 0 to 0.025mm, 130 to 230N
respectively.

All of the hyperparameters for each algorithm are set
according to their recommended values.

B. Performance Indicator

There are so many performance indicators to judge a result
good or not. We choose Hypervolume(HV) here since we
don’t know the Pareto Front before the experiment and the
number of objectives is two so the computational cost of HV
is acceptable. We are supposed to choose a reference point R,
which is [1,1] according to the above normalization.

C. Experiment Results

The Pareto frontiers and the HV values of the 7 algorithms
are shown in Figure.7. The following table II displays the
comparison of the best, the median and the mean HV values
of the algorithms.

TABLE II
COMPARISON BETWEEN DIFFERENT ALGORITHMS

Algorithms Best Median Mean
qEHVI 0.7602 0.7563 0.7521

qParEGO 0.7627 0.7532 0.7541
Random Scalarization 0.7583 0.7492 0.7499

MOEA/D-ASS 0.7577 0.7453 0.7428
θ-DEA-DP 0.7596 0.7361 0.7354

MOEA/D-EGO 0.7012 0.6890 0.6874
NSGA-II 0.6876 0.6555 0.6538

D. Observation and Analysis

Table II shows the best, median and mean value of Hy-
pervolume in 7 algorithms, and the above pictures show the
sampling points of each algorithm, the non-dominated points
are colored orange. We can derive the following observations
from our experiments:

1) Surrogate-assisted algorithms are dramatically outper-
formed non-surrogate-assisted algorithms. We tested
NSGA-II and NSGA-III in our problem and abandoned
NSGA-III since they have similar performance, both 15
percents worse than the top3 surrogate-assisted algo-
rithms.



Fig. 7. PF of algorithms implemented and the HV values.



2) Bayes-optimal policy with Gaussian process surrogate
has a great performance comparing to neural network
surrogate. The top3 algorithms are qEHVI, qParEGO
and RS, they are both Bayesian-surrogate-based. θ-
DEA-DP algorithm we implemented utilized Feedfor-
ward Neural Network (FNN) and the performance is not
good.

3) θ-DEA-DP has better distribution in the solution space
according to the sampling map, we can tell its superiority
in balance the solution distribution compare with other
algorithms such as qParEGO and qEHVI.

4) qParEGO has great robustness, its performance is un-
expectedly good and outperformed many state of arts
algorithms.

5) qEHVI is the best algorithm among all of the seven
algorithms we implemented, inferring from its Pareto
Frontier, its distribution quality can still be improved.

6) Less offspring generated in each iterations in EGO
usually leads to better performance, we tested the per-
formance of NSGA-II in different number of offspring
and we found that generating 1 offspring each time is 5
percents better than generating 10 offspring.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we discussed a new method to optimize the
extend of warpage and maximum von Mises stress in chip
packaging design industry. Finite element model was built in
Abaqus software for simulation analysis, and the interfaces
between Abaqus and Pycharm or MatLab are built to conduct
the real-time estimation for sampling points. A wide range of
algorithms are implemented in python or matlab, including qE-
HVI, qParEGO, θ-DEA-DP, MOEA/D-EGO, MOEA/D-ASS,
random scalarization and NSGA-II. We tested those algorithms
in our black box function and conducted a comparison. By
presenting the Hypervolume results and Pareto frontier, we
demonstrated the superiority of qEHVI in our problem and
discussed the advantage of other algorithms in solution space
distribution.

B. Future work

Due to time limitation, we have not conducted a perfect
experiment, here are some future work we would like take a
deep-dive in:

1) Further study in θ-DEA-DP, since we simply used the
FNN surrogate to predict the dominance relationship
of sampling points. Based on our research, Gaussian
models performed better than FNNs, we might improved
the performance significantly by change the surrogate
model to Gaussian models. Nevertheless, we can also
use other networks like Resnet to see the difference in
θ-DEA-DP.

2) We will do more experiments to find the reason why
qParEGO works well. If reasonable, we can implement
our algorithm based on it.

3) There are many another aspects that we can implement,
such as acquisition function, sub-problem selection and
so on.
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